This pacing guide reflects the changes in the SOL's for 2018.

<table>
<thead>
<tr>
<th>SOL PS.1</th>
<th>Lesson Title</th>
<th>Essential Knowledge and Skills</th>
<th>Resources and Materials</th>
<th>Assessments</th>
<th>6th Grade SOL</th>
</tr>
</thead>
</table>
| 1.a | Lab Safety | • independently and collaboratively plan (DOK 4) and conduct observational and experimental investigations; identify variables, constants, and controls where appropriate and include the safe use of chemicals and equipment | YouTube video--“Teaching Some Science--the Big Bang Theory”
https://www.youtube.com/watch?v=PzwTxVncWrl

General Recap of Lab Safety--video notes

Physical Science Practice e-book pg.2 Lab Safety

YouTube video--Amoeba Sisters “General Lab Safety”
https://www.youtube.com/watch?v=MElXRLcC6RAt | | | | | |
8/12-8/13

Metric Measurement

(And throughout the year)

- take metric measurements using appropriate tools and technologies (DOK 1)

8/14-8/16

Experimental Variables

Asking Questions and Defining Problems

- ask questions that require empirical evidence to answer

- develop hypotheses indicating relationships between independent and dependent variables (DOK 3)

YouTube video: “Big Bang Metric Area Conversion”

https://www.youtube.com/watch?v=dstpxhlj52k

“Why the Metric System Matters”

Ted Ed.

https://www.youtube.com/watch?v=7bUVjWA6Vw

BrainPop: Measuring Matter

Metric Measurement Sorting Cards (differentiation)
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.b 8/19-8/21</td>
<td>The Scientific Method</td>
<td>Planning and Carrying Out Investigations</td>
</tr>
<tr>
<td></td>
<td>(And throughout the year)</td>
<td>· independently and collaboratively plan and conduct observational and experimental investigations (DOK 4); identify variables, constants, and controls where appropriate (DOK 1) and include the safe use of chemicals and equipment (DOK 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· evaluate the accuracy of various methods for collecting data (DOK 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· apply scientific ideas or</td>
</tr>
<tr>
<td></td>
<td>Leveled Texts: Newsela--</td>
<td>A Step-By-Step Guide to the Scientific Method</td>
</tr>
<tr>
<td></td>
<td>LAB--“Keep It Warm, Keep It Chill”, PBL Learning in the Physical Science Classroom, p.189</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical Science Practice e-book</td>
<td>Scientific Method, p.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AACT Density Simulation:</td>
</tr>
<tr>
<td></td>
<td>Lesson Quiz: Steps of the Scientific Method</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.c</td>
<td>Data Tables and Graphs
(Throughout the year)</td>
<td>Interpreting, analyzing, and evaluating data
· offer simple solutions to design problems (DOK 3)
· construct and interpret data tables showing independent and dependent variables, repeated trials, and means (DOK 3)
· construct, analyze, and interpret graphical displays of data and consider limitations of data analysis (DOK 3)
· apply mathematical concepts and processes to scientific questions (DOK 2)
· use data to evaluate and refine design solutions to best meet criteria (DOK 3)</td>
</tr>
<tr>
<td>1.d</td>
<td>The Nature of Science
(And throughout the year)</td>
<td>Constructing and critiquing conclusions and explanations
· construct scientific explanations based on valid and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>reliable evidence obtained from sources (including the students' own investigations) (DOK 3)</td>
<td>· construct arguments supported by empirical evidence and scientific reasoning (DOK 3)</td>
<td></td>
</tr>
<tr>
<td>generate and compare multiple solutions to problems based on how well they meet the criteria and constraints (DOK 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>differentiate between a scientific hypothesis, theory, and law (2.a) (DOK 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.e (throughout the year)</td>
<td>Developing and Using Models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· construct, develop, and use models and simulations to illustrate and/or explain observable and unobservable phenomena (2.a)(DOK 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· evaluate limitations of models (DOK 3)</td>
<td></td>
</tr>
<tr>
<td>1.f (throughout the year)</td>
<td>Obtaining, evaluating, and communicating information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· read scientific texts, including those adapted for classroom use, to determine the central idea and/or obtain</td>
<td></td>
</tr>
</tbody>
</table>
scientific and/or technical information (DOK 1)
 · gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication (DOK 3)
 · construct, use, and/or present an oral and written argument supported by empirical evidence and scientific reasoning (2.c) (DOK 3)

SOL PS.2
The student will investigate and understand that matter is composed of atoms. Key ideas include:

<table>
<thead>
<tr>
<th>SOL PS.2</th>
<th>Lesson Title</th>
<th>Essential Knowledge and Skills</th>
<th>Resources and Materials</th>
<th>Assessment</th>
<th>6th Grade SOLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a 8/26-8/</td>
<td>History of Atomic Theory</td>
<td>Our understanding of atoms has developed over time.</td>
<td>YouTube: “Introduction to Chemistry” Frank Gregorio</td>
<td>Unit Test--Summative</td>
<td></td>
</tr>
<tr>
<td>Hypotheses, Theories, and Laws</td>
<td>Differentiate between scientific hypotheses, theories, and laws. (DOK 3)</td>
<td>Provide examples to demonstrate how the development of atomic theory illustrates the nature of science. (DOK 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lesson Quiz: History of Atomic Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formative-- "History of Atomic Theory Timeline"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Historical Models of Atoms Graphic Organizer” (CW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Comparing Bohr Model to Electron Cloud Model” Includes portion for students to provide examples to demonstrate how the development of atomic theory illustrates the nature of science.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit Test--Summative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lesson Quiz: Hypotheses, Theories, and Laws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Activity/Resource</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle Theory of Matter</td>
<td></td>
<td>Provide examples to demonstrate how the development of atomic theory illustrates the nature of science. (DOK 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Model of the Atom</td>
<td></td>
<td>Construct and use models and simulations to represent the structure of atoms (DOK 2); evaluate the limitations of models used. (DOK 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare and contrast the location, charge and relative mass of protons, neutrons, and electrons in a single atom. (4.a) (DOK 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“The Structure of Atoms Info Sheet” (teacher created)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intro to the PTE</td>
<td></td>
<td>The periodic table can be used to predict the chemical and physical properties of Elements and Chem Symbols Sorting Cards (differentiation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formative--“Getting to Know Your Periodic Table”</td>
<td></td>
<td>Unit Test—Summative Lesson Quiz: Particle Theory of Matter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit Test—Summative Lesson Quiz: Structure of an Atom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formative: Completed Build an Atom Guided Inquiry Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.b 9/16-9/27

Unit Test—Summative
| Families or Groups of the Periodic Table | Interpret data in the periodic table to predict the chemical and physical properties of main group elements. (DOK 2) | BrainPop video: “Periodic Table of Elements”
https://www.brainpop.com/science/matterandchemistry/periodictableofelements/ |
| | | BrainPop Sortify: “Elements of the Periodic Table”
https://www.brainpop.com/games/sortifyelements/|
| | | Physical Science Practice e-book
Elements and Their Symbols, p.66 |
| | | Online Periodic Tables: Interactive:
https://www.ptable.com/ |
		(Flashcards--30 Most common elements (review of 6th grade)
2.c	The kinetic molecular theory is used to predict and explain matter interactions. Interpret diagrams representing different phases	Lesson Quiz: Features of the Periodic Table
11/4-11/15		Lesson Quiz: Common Elements
		Unit Test--Summative
		Lesson Quiz: Groups of the Periodic Table
		Unit Test--Summative
of matter. (DOK 2)

Construct and use models and simulations to represent and/or explain the atom and phases of matter (DOK 3); evaluate the limitations of models used when appropriate. (DOK 4)

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. (DOK 3)

Compose evidence-based conclusions, explanations, and arguments to identify changes in matter when thermal energy is added or taken away. (1.f) (DOK 4)

PS.2 Unit Vocabulary

Atoms, Atomic mass, Atomic number, Change of state, Chemical properties, Electrons, Electromagnetic force, Energy levels, Group, Hypothesis, Kinetic energy, Neutrons, Nucleus, Physical properties, Proton, Pure substance, Scientific law, Sub-atomic particles, Theory, Thermal energy, Valence electrons
SOL PS.3
The student will investigate and understand that matter has properties and is conserved in chemical and physical processes.

<table>
<thead>
<tr>
<th>PS.3 SOL</th>
<th>Lesson Title</th>
<th>Essential Knowledge and Skills</th>
<th>Resources and Materials</th>
<th>Assessments</th>
<th>6th grade SOL’s</th>
</tr>
</thead>
</table>
| 3.a 9/30-10/4 | **Chemical and Physical Properties** | Pure substances can be identified based on their chemical and physical properties
Distinguish between physical properties and chemical properties of matter. (DOK 3)
Generate, analyze, and interpret data in tables, graphs, charts, diagrams, and/or other displays related to physical and chemical properties of matter. (DOK 3)
Apply mathematical and computational thinking to calculate and compare the | **BrainPop: pH Scale, Acids and Bases**
Physical Science Practice e-book
Acid, Base, or Salt?, p.90
pH, p.91
pH of Salt Solutions, p.92
Interactive Notebook--Physical Science
pH--Acids and Bases, p.21
Phet Simulation: Acid-Base Solutions
YouTube video: *Particles of Your World, Crash Course Kids*
https://www.youtube.com/watch?v=npv74D2MO6Q | **Unit Test--Summative**
Lesson Quiz: Physical Properties |
Identifying a Pure Substance

Elements, Compounds and Mixtures

- Plan and carry out investigations to explore the relationship between mass, volume, and density, collecting and analyzing data in metric and SI units. (DOK 4)
- Generate, analyze, and interpret data in tables, graphs, charts, and/or other displays related to mass, volume, and density. (3.a) (DOK 3)
- Identify and describe a pure substance based on its physical and/or chemical properties. (DOK 2)
- Provide examples of the specific uses of matter that are suited to their physical or chemical properties. (DOK 1)

BrainPop: States of Matter

Chem4Kids website--"Matter" (with interactive quiz_

Phases of Matter Class Notes

Physical Science Practice e-book
- States of Matter Crossword, p.65
- Separation of Mixtures, p.64

Interactive Notebook--Physical Science
- States of Matter, p.11
 "Molecules to Know" hands on activity

Leveled text: Newsela--Matter and Energy, What is Matter?
https://newsela.com/read/elem-sci-matter/id/29109

Phet: Density
https://phet.colorado.edu/en/simulation/legacy/density
With activity Sheet

Unit Test--Summative
Lesson Quiz: Elements, Compounds, and mixtures
<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Description</th>
<th>Resource</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/21-10/25</td>
<td>Chemical Changes</td>
<td>Pure substances can undergo physical and chemical changes that may result in a change of properties</td>
<td>BrainPop: Chemical Equations</td>
<td>Unit Test--Summative</td>
</tr>
<tr>
<td></td>
<td>(Done with 3.a)</td>
<td>Plan and carry out investigations to explore the relationship between mass, volume, and density, collecting and analyzing data in metric and SI units.(3.a) (DOK 4)</td>
<td>Predict, Observe, Explain: Activities Enhancing Scientific Understanding-- Chapter 12 Understanding Chemical Changes(DOK 4)ges(lab station activities)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Done with 3.a)</td>
<td>Generate, analyze, and interpret data in tables, graphs, charts, and/or other displays related to mass, volume, and density.(3.a) (DOK 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical and Chemical Changes</td>
<td>Distinguish between physical and chemical changes. (DOK 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Changes Lab</td>
<td>Compose evidence-based conclusions, explanations, and arguments from data obtained in investigation related to chemical changes in matter. (DOK 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endothermic and Exothermic Reactions</td>
<td>Elements, Compounds, and Mixtures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyze and interpret diagrams and/or other displays to determine if a chemical or physical change has occurred. (DOK 3)</td>
<td>Differentiate between elements, compounds,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical change has occurred. (DOK 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using evidence and scientific reasoning to differentiate between a chemical reaction that requires an input of energy (endothermic) and other release energy (exothermic). (DOK 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply scientific principles and the engineering process to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. (DOK 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.c 10/15-10/18</td>
<td>Intro to Chemical Bonds</td>
<td>Compounds form through ionic and covalent bonding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ionic vs. Covalent Bonds</td>
<td></td>
<td>Compare and contrast ionic and covalent bonding. (DOK 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Which bonds Will Form?</td>
<td></td>
<td>Apply scientific principles to separate a mixture. (DOK 3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apply scientific principles to develop a plan to separate a mixture. (DOK 3)

- **ESS--Chemical Bonds**
 - BrainPop: “Chemical Bonds”
 - https://www.brainpop.com/science/matterandchemistry/chemicalbonds/
 - Physical Science Practice e-book
 - Types of Chemical Bonds, p.74
 - Interactive Notebook--Physical Science
 - Chemical Bonds, p.15

- **CK12 website--”Chemical Bonds”**
 - Reading, video, practice and more.
 - https://www.ck12.org/c/earth-science/chemical-bonds/

- **Chem4Kids--Compound Basics**
 - Chemical Bonds Quiz (interactive)

- **BrainPop: Ions, Isotopes**
 - Exploring Our Fluid Earth: Covalent Bonds

Unit Test--Summative
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28-11/1</td>
<td>Chemical Reactions and Chemical Equations</td>
<td>Balanced chemical equations model the conservation of matter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify the reactants and products in a given chemical equation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DOK 1)</td>
</tr>
<tr>
<td></td>
<td>Balancing Chemical Equation</td>
<td>Apply the Law of Conservation of Mass to balance chemical equations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DOK 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BrainPop: Law of Conservation of Mass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical Science Practice e-book</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Balancing Equations, p.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Word Equations, p.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conservation of Mass, p.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pHet Balancing Chemical Equations interactive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phet: Balancing Chemical Equations Student Handout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>https://phet.colorado.edu/en/contributions/view/3955</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JLab interactive practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>balancing chem equations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>https://education.jlab.org/elementbalancin</td>
</tr>
</tbody>
</table>
SOL PS.4
The student will investigate and understand that the periodic table is a model used to organize elements based on their atomic structure. Key ideas include:

<table>
<thead>
<tr>
<th>PS.4 SOL’s</th>
<th>Lesson Title</th>
<th>Essential Knowledge and Skills</th>
<th>Resources and Materials</th>
<th>Assessments</th>
<th>6th grade SOL’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.a 9/3</td>
<td>Intro to the PTE</td>
<td>Symbols, atomic numbers, atomic mass, chemical families (groups), and periods are identified on the periodic table</td>
<td>PTE with Electron Shell Numbers: http://theprometheanteachers.blogspot.com/2011/05/interactive-periodic-table-of-elements.html</td>
<td>Unit Test--Summative Lesson Quiz:</td>
<td></td>
</tr>
<tr>
<td>9/13</td>
<td>Particles of an Atom and the Periodic Table</td>
<td>Compare and contrast the location, charge and relative mass of protons, neutrons, and electrons in a single atom. (taught with 2.a) (DOK</td>
<td>BrainPop: Periodic Table of Elements, Metals Elements and Chem Symbols Sorting Cards (differentiation)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://sciencenotes.org/balancing-chemical-equations-worksheet/
Elements and Their Symbols, p. 66
Interactive Notebook--Physical Science
Periodic Table, p.17
Chem4Kids: “Periodic Table” interactive quiz
NOVA: Developing the Periodic Table
Physical Science Practice e-book
Periodic Table Crossword, p.73
Phet: Isotopes and Atomic Mass
https://phet.colorado.edu/sims/html/isotopes-and-atomic-mass/lat
Lesson Quiz: Isotopes and Ions |
| 4.b 9/9-9/13 | Characteristics of Metals, Non-metals, and Metalloids | Elements are classified as metals, nonmetals, and metalloids, | Physical Science Practice e-book
Properties of Metals and Nonmetals, p. 70 | Lesson Quiz: Characteristics of Metals |
Classify a given element as metal, nonmetal, or metalloid based on its position in the periodic table. (DOK 2)

Periodic Table Puzzle, p.72
Chem4Kids--Metals
CK-12--Metalloids
Reading, Video, and Practice
https://www.ck12.org/c/physical-science/metalloids/

SOL PS.5
The student will investigate and understand that energy is conserved. Key ideas include:

<table>
<thead>
<tr>
<th>PS.5 SOL’s</th>
<th>Lesson Title</th>
<th>Essential Knowledge and Skills</th>
<th>Resources and Materials</th>
<th>Assessments</th>
<th>6th grade SOL’s</th>
</tr>
</thead>
</table>
| 5.a 12/2-12/6 | Energy Forms | Energy can be stored in different ways. | YouTube Video: “Introduction to Physics” Frank Gregorio
https://www.youtube.com/watch?v=PUZkE1vIvI | ESS--States and Forms of Energy |
| Kinetic and Potential Energy | Identify and give examples of common forms of energy. (DOK 1) | PBS Learning Media NOVA video: “Energy Defined”
https://www.pbslearningmedia.org/resource/nve1.sci.phy.defined/energy-defined/ |
| Energy Transformations (Potential and Kinetic) | Recognize examples of energy causing change. (DOK 1) | SAMS: Heat and Light from Electricity (96)
https://itsi.portal.concord.org/browse/eresources/96 | | |
<table>
<thead>
<tr>
<th>5.b</th>
<th>Convection, Conduction, and Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/9-1 2/13</td>
<td>Energy is transferred and transformed.</td>
</tr>
<tr>
<td></td>
<td>Plan and carry out experimental and/or observational investigations to provide evidence that energy can be transferred and transformed between its different forms. (DOK 4)</td>
</tr>
<tr>
<td></td>
<td>Identify the energy transformations that occur when energy is used to run a device at home or in school. (DOK 1)</td>
</tr>
<tr>
<td></td>
<td>Identify the energy transformations that occur between radiant energy</td>
</tr>
<tr>
<td></td>
<td>NASA Real World NASA e-lipse video—"Law of Conservation of Energy"</td>
</tr>
<tr>
<td></td>
<td>Predict, Observe, Explain: Activities Enhancing Scientific Understanding— Chapter 6 Understanding Pressure (lab station activities)</td>
</tr>
<tr>
<td></td>
<td>PBS Learning Media: “Energy in a Roller Coaster Ride”</td>
</tr>
</tbody>
</table>

Generate, analyze, and interpret data in tables, graphs, charts, diagrams and/or other displays to compare relative amounts of potential and kinetic energy. (DOK 3)

Construct and use models to show that different amounts of potential energy are stored in the system when the arrangement of objects interacting at a distance changes. (DOK 2)

Physical Science Practice e-book
Potential and Kinetic Energy, p.29

BrainPop: Kinetic Energy, Potential Energy
https://www.youtube.com/watch?v=8qmSzMwTkpk

YouTube: SciShow “What Is Energy?”
https://www.youtube.com/watch?v=CW0_S5YpYVo

YouTube: Wile E Coyote “Potential and Kinetic Energy”
https://www.youtube.com/watch?v=Jnj8mc04r9E

YouTube: Bill Nye “Energy”,

Phet: Energy Forms and Changes
<table>
<thead>
<tr>
<th>in sunlight and the food we eat. (Photosynthesis) (DOK 3)</th>
<th>Video: “Energy Transfer in a Trebuchet” https://www.pbslearningmedia.org/resource/hew06.sci.phys.maf.trebuchet/energy-transfer-in-a-trebuchet/?#.Wz5FdNJKjIU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design an investigation from a testable question related to energy transfer through conduction, convection, and radiation. (DOK 4)</td>
<td></td>
</tr>
<tr>
<td>Generate, analyze, and interpret data in graphs, charts, diagrams, and/or other displays related to thermal energy transfer through conduction, convection, and radiation. (DOK 3)</td>
<td></td>
</tr>
<tr>
<td>Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. (DOK 4)</td>
<td></td>
</tr>
<tr>
<td>Compare and contrast Celsius and Kelvin temperature scales and use them to describe absolute zero. (DOK 2)</td>
<td></td>
</tr>
<tr>
<td>Explain absolute zero in terms of molecular movement (kinetic energy). (DOK 2)</td>
<td></td>
</tr>
<tr>
<td>Use scientific principles to explain the function of a thermometer. (DOK 2)</td>
<td></td>
</tr>
<tr>
<td>Analyze a time/temperature graph of a phase change to determine the temperature at which the phase</td>
<td></td>
</tr>
</tbody>
</table>
| 5.c | 12/9-12/13 | Energy can be transformed to meet societal needs.
Ask questions and define problems related to electrical energy production in Virginia. (DOK 2)
Describe energy systems to include transformations in nature and those that are used to meet societal needs. (DOK 2)
Evaluate and use credible, accurate, and unbiased sources of print and electronic media to gather and summarize scientific and technical information to describe that energy and fuels (fossil, renewable, and nuclear) are derived from natural resources and their uses affect the environment. (DOK 1) |
The student will investigate and understand that waves are important in the movement of energy. Key ideas include:

<table>
<thead>
<tr>
<th>PS.6 SOL’s</th>
<th>Lesson Title</th>
<th>Essential Knowledge and Skills</th>
<th>Resources and Materials</th>
<th>Assessments</th>
<th>6th grade SOL’s</th>
</tr>
</thead>
</table>
| 6.a 1/6-1/10 | Energy may be transferred in the form of longitudinal and transverse waves | **BrainPop:** Sound, Waves
YouTube Video: Crash Course Physics--"Traveling Waves"
https://www.youtube.com/watch?v=TfYCnOvNnFU
Longitudinal and Transverse Wave Animation.
https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html
Physical Science Practice e-book
Wave Diagram, p.35
Wave Velocity Calculations, p.36
Interactive Notebook--Physical Science
Characteristics of Waves, p.39
Kinds of Waves, p.41
Sound Properties, p.47
Predict, Observe, Explain: Activities Enhancing Scientific Understanding-- Chapter 9
Understanding Sound (lab station) | Lesson Quiz: Characteristics of Sound Waves |
| 6.b | Mechanical waves need a medium to transfer energy; | Mechanical waves need a medium to transfer energy; |
| 1/6-1/10 | Develop and use a model to describe that mechanical waves and reflected, absorbed, or transmitted through various materials. (DOK 2) | Develop and use a model to describe that mechanical waves and reflected, absorbed, or transmitted through various materials. (DOK 2) |
| | Design an investigation related to sound. The investigation may be complete experimental design or may focus on systematic observation, description, measurement, and/or data collection and analysis. (DOK 4) | Design an investigation related to sound. The investigation may be complete experimental design or may focus on systematic observation, description, measurement, and/or data collection and analysis. (DOK 4) |
| | Interpret graphs and charts to determine factors that determine the speed of sound through various materials. (DOK 2) | Interpret graphs and charts to determine factors that determine the speed of sound through various materials. (DOK 2) |
| | https://www.pbslearningmedia.org/resource/phy03.sci.phys.mfe.under/sound-waves-underwater-true-or-false/#.Wz5LKNJKjIU | https://www.pbslearningmedia.org/resource/phy03.sci.phys.mfe.under/sound-waves-underwater-true-or-false/#.Wz5LKNJKjIU |
| | “The Speed of Sound” | “The Speed of Sound” |
| | pHet: Wave On a String Simulation | pHet: Wave On a String Simulation |
| | With accompanying lab sheet | With accompanying lab sheet |
| | Lesson Quiz: Sound Waves and Mediums | Lesson Quiz: Sound Waves and Mediums |
| | amplitude, frequency, crest, and trough. (taught with PS.7.a) | amplitude, frequency, crest, and trough. (taught with PS.7.a) |
| | Compare and contrast longitudinal and transverse waves and their characteristics. (DOK 2) | Compare and contrast longitudinal and transverse waves and their characteristics. (DOK 2) |
| | Plan and carry out investigations related to the refraction reflection, and diffraction of longitudinal and transverse waves. (DOK 4) | Plan and carry out investigations related to the refraction reflection, and diffraction of longitudinal and transverse waves. (DOK 4) |

Activities

- [pHet: Wave On a String Simulation](https://phet.colorado.edu/en/simulation/wave-on-a-string)

PBS Learning Media:

- “Sound Waves Underwater: True or False” interactive quiz. https://www.pbslearningmedia.org/resource/phy03.sci.phys.mfe.under/sound-waves-underwater-true-or-false/#.Wz5LKNJKjIU
- “The Speed of Sound” https://www.pbslearningmedia.org/resource/47c8d6ce-958f-4558-bd25-0c29502902e5/47c8d6ce-958f-4558-bd25-0c29502902e5/
- [pHet: Wave On a String Simulation](https://phet.colorado.edu/en/simulation/wave-on-a-string)

Lesson Quiz:

- Sound Waves and Mediums
| SOL PS.7 | The student will investigate and understand that waves are important in the movement of energy. Key ideas include: |

<table>
<thead>
<tr>
<th>PS.7 SOL's</th>
<th>Lesson Title</th>
<th>Essential Knowledge and Skills</th>
<th>Resources and Materials</th>
<th>Assessments</th>
<th>6th grade SOL's</th>
</tr>
</thead>
</table>
| 7.a
1/21-1/24 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling a Transverse Wave</td>
</tr>
<tr>
<td>Electromagnetic radiation, including visible light has wave characteristics and behavior.</td>
</tr>
<tr>
<td>Model a transverse wave and diagram, label and describe the components: wavelength, amplitude, frequency, crest, and trough. (PS.6.a) (DOK 2)</td>
</tr>
<tr>
<td>Describe the wave behavior of visible light. (DOK 1)</td>
</tr>
<tr>
<td>Types of Electromagnetic Waves</td>
</tr>
<tr>
<td>Compare and contrast the various types of electromagnetic waves in terms of wavelength, frequency, and energy. (DOK 2)</td>
</tr>
</tbody>
</table>

ESS--Light and the Electromagnetic Spectrum

Online image: https://www.google.com/search?q=electromagnetic+spectrum&source=ins&tbm=isch&sa=X&ved=0ahUKEwjXz7Eysb7Eysb7Eysb7Ey7EysAhVRuVkJH7Q7cQ_AUIGb1w-1366&bsh=662&safe=active&ssui=on#imgrc=yYWwmoFv0tUrMP

BrainPop: Light

Interactive Notebook--Physical Science
Light, p.43

YouTube video: “The History of Light”
https://www.youtube.com/watch?v=ak7GB74Qlug

Interactive Notebook--Physical Science
Light at a Surface, p. 45

Predict, Observe, Explain: Activities Enhancing Scientific Understanding-- Chapter 8
Understanding Light (lab station activities)
<table>
<thead>
<tr>
<th>Light Wave Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why Are Leaves Green?</td>
</tr>
<tr>
<td>Construct and use models and simulations to represent how waves are reflected, absorbed, or transmitted through various materials. (DOK 2)</td>
</tr>
</tbody>
</table>
| **pHet Simulation** “Bending Light”
https://phet.colorado.edu/en/simulation/bending-light
with worksheet
https://phet.colorado.edu/en/contributions/view/4316 |
| **Physical Science Practice e-book**
Reflection, p. 37
Refraction, p. 38 |
| **YouTube Video:** “Science Behind: Why Are Leaves Green?”
https://www.youtube.com/watch?v=UsVD5g4Qkxs |
| **Lesson Quiz:** Why Are Leaves Green? |
| **Lesson Quiz:** Concave and Convex Lenses |
| 7.b 2/3-2/7 | **Plan and carry out investigations related to the refraction of visible light. (DOK 4)** | **Regions of the electromagnetic spectrum have specific characteristics and uses.**
Identify and explain in general terms the uses of mirrors and lenses in everyday life. (DOK 2)
Describe an everyday application of each of the major forms of electromagnetic energy. (DOK 1) | **pHet Simulation** “Bending Light”
https://phet.colorado.edu/en/simulation/bending-light
with worksheet
https://phet.colorado.edu/en/contributions/view/4316

Physical Science Practice e-book
Reflection, p. 37
Refraction, p.38
Scientific Notation, p.11

Physical Science Practice e-book
Light Rays and Convex Lenses, p.40

YouTube Videos:
“Convex and Concave Lenses”
https://www.youtube.com/watch?v=4zuB_dSjn1Y

“Convex and Concave Mirrors”
https://www.youtube.com/watch?v=wvYduTBpbuA

ESS--Light and the Electromagnetic Spectrum

BrainPop: Electromagnetic Spectrum

Physics4Kids website--Light
Overview (with interactive quiz)

Science at NASA video--”Tour the EM Spectrum
http://www.physics4kids.com/files/light_emtyp
SOL PS.8
The student will investigate and understand that work, force, and motion are related. Key ideas include:

<table>
<thead>
<tr>
<th>PS.8 SOL’s</th>
<th>Lesson Title</th>
<th>Essential Knowledge and Skills</th>
<th>Resources and Materials</th>
<th>Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.a 2/24-2/28</td>
<td>Motion can be described using position and time</td>
<td>ESS--Work and Power</td>
<td>Physical Science Practice e-book</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apply the concept of frame of reference to motion scenarios. (DOK 2)</td>
<td></td>
<td>Determining Speed, p.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calculating Average Speed, p.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acceleration Calculations, p.17</td>
<td></td>
</tr>
</tbody>
</table>
| 8.b 3/2-3/6 | Motion is described by Newton’s Laws | ESS--Work and Power
ESS--The Rate of Motion |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critique and improve an investigation about forces. (DOK 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plan and carry out an investigation to</td>
<td></td>
</tr>
</tbody>
</table>
| | Graphing Speed vs. Time, p.18
Graphing Distance vs. Time, p.19
Force Diagrams, p.22
Force and Acceleration, p.23
Motion Matching, p.24
Calculating Work, p.30
Calculating Power, p.33
Force and Work Crossword, p.34 | |
<table>
<thead>
<tr>
<th>Plan and carry out an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. (DOK 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differentiate between mass and mass and...</td>
</tr>
</tbody>
</table>
Plan and carry out investigations related to mass and weight, collecting and analyzing data in metric and SI units where appropriate. (DOK 4)

Identify situations that illustrate each of Newton’s Laws of Motion. (DOK 1)

Apply an understanding of scientific principles and laws to describe and predict motion. (DOK 2)

Construct and use models and simulations to represent and/or explain Newton’s Laws of Motion. (DOK 2)

Design and conduct an investigation regarding Newton’s Second Law of Motion to show the relationship among force, mass, and acceleration. (DOK 4)

Explain how force, mass, and acceleration are related. (DOK 2)

Apply Newton’s Third Law of Motion to design a solution to a problem involving the motion of two colliding objects. (DOK 2)

State the direction of motion after the interaction of two objects. (DOK 1)
Explain how the concept of work, force, and motion apply to everyday uses and current technologies. (DOK 2)

Recognize the direction of the force of friction. (DOK 1)

Explain why force must continually be exerted to keep an object sliding across a carpeted surface. (DOK 2)

Recognize examples of mechanical work. (DOK 1)

Apply mathematical and computational thinking to solve basic problems related to work. (DOK 2)

Make measurements and apply mathematical and computational thinking to calculate the power of an object. (DOK 2)

Apply the concept of efficiency to simple machines. (DOK 2)

Apply the concept of mechanical advantage to simple machines. (DOK 2)

Use models to illustrate and explain concepts related to work, power,
<table>
<thead>
<tr>
<th>mechanical advantage, and efficiency. (DOK 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS--Work and Power</td>
</tr>
<tr>
<td>Glencoe Simulation: “What is the Relationship Between Work, Force, and Distance” Virtual Lab</td>
</tr>
<tr>
<td>NASA e-clips video--“Our World: What is Work?”</td>
</tr>
<tr>
<td>Physics4Kids website--Work (with interactive quiz)</td>
</tr>
<tr>
<td>BrainPop: Work, Power, Levers</td>
</tr>
<tr>
<td>Physical Science Practice e-book</td>
</tr>
<tr>
<td>Simple Machines, p.27</td>
</tr>
<tr>
<td>Types of Levers, p.28</td>
</tr>
<tr>
<td>Interactive Notebook--Physical Science</td>
</tr>
<tr>
<td>Work, 29</td>
</tr>
<tr>
<td>Simple Machines, p.33</td>
</tr>
<tr>
<td>Predict, Observe, Explain: Activities Enhancing Scientific Understanding--Chapter 7 Understanding Work and Energy (lab station activities)</td>
</tr>
</tbody>
</table>
The student will investigate and understand that there are basic principles of electricity and magnetism. Key ideas include:

<table>
<thead>
<tr>
<th>PS.9 SOL’s</th>
<th>Lesson Title</th>
<th>Essential Knowledge and skills</th>
<th>Resources and Materials</th>
<th>Assessment</th>
<th>6th grade SOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.a 3/30-4/3</td>
<td>Static Electricity</td>
<td>An imbalance of charge generates static electricity. Model the transfer of electrons that result in a static charge. (DOK 2)</td>
<td>ESS--Electricity and Circuits</td>
<td>Lesson Quiz: Static Electricity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uncovering Student Ideas in Physical Science, vol.2</td>
<td>“What Happens When You Bring a Balloon Near a Wall?” p.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BrainPop: Static Electricity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interactive Notebook--Physical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.b</td>
<td>Materials have different conductive properties. Provide examples of materials that are good conductors, semiconductors, and insulators. (DOK 1) Apply scientific principles and the engineering process to use a battery, several wires, and a bulb to determine if an object is an electrical conductor or insulator. Create a model to help explain your solution. (DOK 2) Uncovering Student Ideas in Physical Science, vol.2 “Can It Be Electrically Charged?” p.23 Uncovering Student Ideas in Physical Science, vol.2 “Conductors or Insulators?”, p.31</td>
<td>Lesson Quiz: Conductors, Semi-Conductors, and Insulators</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Construct simple series and parallel circuits to determine the relationship between voltage, resistance, and current. (DOK 2) | P.59
Uncovering Student Ideas in Physical Science, vol.2
“Which Burns Brighter?” p.75
Uncovering Student Ideas in Physical Science, vol.2
“How Would You Rank the Brightness of These Bulbs?” p.79

Define and recognize examples of voltage, current, and resistance in electric circuits. (DOK 1) |

Uncovering Student Ideas in Physical Science, vol.2
“How Do You Think About the Flow of Electric Current Through a Circuit?”, p.67

Describe the energy flow and transformation in a circuit containing a power source and no more than three loads. (DOK 2) |

Uncovering Student Ideas in Physical Science, vol.2
“How Does the Current in Each Battery Compare?” p.83

Discuss the advantages of electronic over electrical circuits. (DOK 2) |

BrainPop: Electricity, Electrical Circuits
TOPS: p.1 “It Works!”
P.2 “To Light or Not to Light”

Evaluate and use credible, accurate, and unbiased sources of print and electronic resources. |
<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/13-4/17</td>
<td>Media to gather and summarize scientific and technical information about current applications of semiconductors and their uses. (e.g. diodes and transistors). (DOK 1)</td>
</tr>
</tbody>
</table>
| | Interactive Notebook--Physical Science
 Electricity, p.49 |
| | **Predict, Observe, Explain: Activities Enhancing Scientific Understanding--** Chapter 5 Understanding Current Electricity (lab station activities) |
| | **ScienceFlix** “The Nature of Electricity” article
| | Need to create a GoogleForm assessment to accompany. |
| | **Circuit Globe: Difference Between Electrical and Electronic Devices**

Note:

- Magnetic fields model the magnetic properties of materials
- BrainPop: Magnetism
- Physics4Kids website--NASA
 Connect video “Electricity and...”
Identify technologies that utilize electromagnetism. (DOK 1)
Apply an understanding of electromagnetic induction to explain the current produced when a coil of wire is moved through a magnetic field. (DOK 2)
Plan and conduct an investigation to determine the factors that affect the strength of electric and magnetic fields. (DOK 4) | Magnetism”
Physics4Kids website--”Current”
Physical Science Practice e-book
Magnetic Fields, p.44
Interactive Notebook--Physical Science
Magnetism, p.59
Compare and contrast generators and motors and |
how they function. (DOK 3)
Identify everyday appliances and technologies that utilize motors and generators. (DOK 1)

April 27 through May 15 will be Review and SOL prep.